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We study the existence and the role of solitary waves in the instability of a fluid layer 
flowing down an inclined plane. The approach presented is fully nonlinear. Solitary 
waves steady in a moving frame are described by homoclinic trajectories of an 
associated ordinary differential equation. They are searched numerically for a given 
value of viscosity and surface tension. Several kinds of solitary waves can exist, 
characterized by their number n of humps. We investigate the stability of these waves 
by integrating the initial-value problem directly. Solitary waves with more than 1 
hump did not appear in the simulation, and moreover a catastrophic behaviour took 
place for too large a Reynolds number ( R  >, R:) or too large an amplitude, suggesting 
a finite-time singularity. The long-term evolution is shown to be a very slow 
relaxation to a steady state in a moving frame. The relation to the experimental 
observation of localized wavetrains is also discussed. 

1. Introduction 
Theoretical understanding of the nonlinear development of instability and transition 

to turbulence in parallel flows is commonly believed to be less advanced than in the 
case of Rayleigh-BBnard convection for instance (see e.g. Swinney & Gollub 1981). 

In  parallel flows the perturbative approach in terms of normal modes does not take 
account of strongly nonlinear localized structures, which seem to play an important 
role in the transition process (see Tritton 1977). In order to attack this problem, we 
have considered the ‘simple’ case of the instability of a liquid layer flowing down 
an inclined plate. Kapitza & Kapitza (1949) studied experimentally the related 
problem of a liquid layer flowing down a vertical cylinder. Several regimes involving 
solitary waves were observed. The analysis of such solutions is difficult to understand 
within the framework of standard normal-mode analysis and perturbation theory. 
In the words of Kapitza & Kapitza: 

‘ A  quantitative description of the properties of the single waves of a thin fluid flow 
layer in the presence of viscosity and surface tension will obviously be associated with 
such serious mathematical difficulties that one can scarcely expect to overcome 
them.’ 

Benjamin (1957) and Yih (1963) solved the linear stability problem for the basic 
flow of constant thickness and ,determined the critical Reynolds number R, for 
instability. The subsequent analysis of the weakly nonlinear evolution relied mostly 
on a Landau-equation formalism (Landau & Lifshitz 1 9 5 9 ~ ) .  Benney (1966) derived 
an equation of the form 

d 
-bI2 dt = r142-Yla14, 
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where 7 is small and proportional to R-R, near R,. Later Lin (1969) and Gjevik 
(1970), taking superficial tension into account, showed that the amplitude la1 of 
spatially periodic perturbations tends to a small but finite value for R+R,,  i.e. y > 0. 

Lin (1974) derived an equation for the envelope function describing a slowly 
modulated periodic solution. Nakaya (1975) improved the nonlinear analysis and also 
found a supercritical or normal bifurcation. More recently, Sivashinsky & Michelson 
(1980) and Sivashinsky & Schlang (1982) studied the limit of large superficial tension 
and obtained a simple nonlinear partial differential equation known for having a 
spontaneously turbulent solution. We begin this paper with a short presentation of 
the partial differential equation which governs the height of the flowing film made 
of Newtonian viscous fluid, and discuss briefly the linear stability problem, defining 
the relevant critical Reynolds number R, ($2). But we are mostly interested in 
finite-amplitude localized solutions, and turn to the problem of ‘solitary waves ’. The 
possibility of such solutions was pointed out by Benney (1966) on the basis of an 
analogy with the Korteweg-de Vries equation in the weakly nonlinear limit. Here 
we do not restrict ourselves to weak nonlinearities, and we look for ‘solitary waves’ 
(93). These waves are assumed to travel without deformation in a frame moving at 
a certain velocity v relative to the laboratory frame. I n  terms of the moving 
coordinate, they are governed by an ordinary differential equation. Both upstream 
and downstream the height of the perturbed film tends to the unperturbed height 
of the basic flow. In  the theory of dynamical systems, such solutions are called 
homoclinic trajectories (see e.g. Smale 1967). These special solutions exist only for 
special values of the velocity v at given Reynolds number. This relation v(R)  is 
determined numerically for the different kinds of solitary waves which can appear 
with 1,2 ,  . . . principal humps. The stability (i.e. the actual existence) of these solutions 
is not obvious. Thus in order to ascertain i t ,  we have investigated the initial-value 
problem for the complete partial differential equation ($4). In  our simulations only 
one kind of solitary waves could be observed, namely those with only one hump. In 
some cases the evolution was quite complicated, looking turbulent, but we have some 
evidence that this behaviour was only transient. We shall also report on other cases 
where a catastrophic evolution suggests a breaking of the film. Finally we discuss the 
relevance of ideas and methods developed in this paper for the more general case of 
localized structures in parallel flows to which we have alluded at the beginning. 

2. Fundamental equations and the linear stability problem 
Kapitza & Kapitza (1949) studied experimentally a thin film of liquid flowing down 

a vertical cylinder. The case of an inclined plate is slightly different since curvature 
effects disappear, while the inclination angle introduces itself as a new parameter 
controlling the instability threshold. Here we consider a film of viscous fluid flowing 
down a plane under the action of gravity. This situation is pictured in figure 1. We 
take the x- and z-axes in the plane, x being in the direction of largest slope. The 
y-axis is perpendicular to the plane. In  what follows we consider 2-dimensional flows 
only; that is to say flows parallel to the (x ,  y)-plane and independent of the transverse 
coordinate z .  We shall reconsider this important restriction later. Let h(x, t )  be the 
ordinate of the free surface of the fluid layer a t  abscissa x and time t and 
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FIGTJRE 1. Velocity profile of the basic flow on a plate inclined with respect to the 
horizontal in the presence of gravity. 

be the flow rate parallel to the direction of the largest slope (x). The incompressibility 
condition and t,he kinematics of the free surface lead to the equation 

ht + Q, = 0. ( 2 )  

Indices x and t denote partial derivatives. The flow rate Q can be expressed as a 
function of h by using the Navier-Stokes equations in the long-wave limit, that  is 
when the range of variation of h as a function of t is much larger than the layer 
thickness. Following Kapitza, who interpreted his observations as the result of 
combined effects of gravity and surface tension, we assume that Wa2 - 1 and 
a-l 1 ,  where 01 = h,/l is the (small) ratio of the undisturbed layer thickness h, to 
the lengthscale 1 for x-variations and where W is the Weber number comparing 
gravity forces to surface tension. Thus, retaining terms up to order a and Wu3 
included in the expression of Q ,  one obtains (Lin 1974; Nakaya 1975) from ( 2 )  

ht + ($h3 + (& Rh6 - $Bh3) h, + $ Wh3h,,.), = 0, (3) 

where R is the Reynolds number of the undisturbed flow and B is the cotangent 
of the angle between the horizontal direction and the x-axis. The unit length in (3) 
is the thickness of the undisturbed film. 

The main reason to  believe that (3) is a consistent approximation is the following. 
Let us consider the stability of the basic flow (h  = 1)  against infinitesimal perturba- 
tions. Writing h = 1 +ah, upon linearization of (3) we get 

6ht + 26h, + (+R - $B) 6h,, + 5 W6h,,,, = 0, (4) 

and look for solutions of the form 6h = Hexp (iqz+ crt). Equation (4) leads to 

cr+2iq-(&R-$B)q2+#Wq4 = 0, 

Re(cr) = (+R-$B)q2-5Wq4 

Im (cr) = -2q. 

or 

and 
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For R < R, = $B all infinitesimal perturbations are damped, while for R > R, there 
exists a finite band of unstable wavevectors near q = 0. As -1m (cr)/q = 2 all these 
wavevectors have the same phase velocity. With our sign convection this is a 
downstream velocity. 

The role of each term in (3) can be understood now as follows. The advection of 
the free surface is described by ($h3),, while ((&Rh6-$Bh3) hx)x describes the 
instability of the free surface. The stabilizing effect of surface tension is taken into 
account by (fWh3h,.,),, and this term is the first stabilizing one that appears in the 
long-wavelength expansion. It is necessary in particular to avoid the occurrence of 
an ill-defined evolution equation unstable for infinitely large wavenumbers. This is 
true indeed for the linearized equation (4): because, as we shall see in this paper, the 
nonlinear equation (3) may develop singularities from smooth initial conditions after 
a finite time. 

The equation (3) describes consistently the evolution of the film because it includes 
all qualitatively important effects at their lowest order in a : nonlinearities, short- 
wavenumber instability, large-wavenumber stability. In what follows, we shall use 
dimensionless values of W ,  R and B,  noticeably in our numerical computations. 

Nevertheless, our study could be of more general interest, because i t  retains all 
qualitatively important effects in the evolution of the instability. As noticed by Lin 
(1974), the fact that in (3) a band of wavenumbers, including zero, are linearly 
unstable is appropriate for the description of 'single ' or solitary waves. 

3. Solitary waves at rest in a moving frame (from the point of view of 
dynamical system theory) 

3.1. General scope and qualitative aspects of solitary waves 
We look for special solutions of (3) travelling without deformation in a frame 
moving relative to the laboratory frame at a certain speed v. Then setting 
h(x, t )  = h(z),  where z = x-vt, and denoting derivatives with respect to z by primes, 
for such solutions we can write (3) in the form 

- @h' + [h3 + g( Rh6 - R, h3) h' + Wh3h"' 3 ' = o ,  

where R, = 2B as shown earlier. Obviously ( 5 )  admits a first integral 

-&h + h3 + f( Rh6 - R, h3) h' + Wh3h"' = K. 

( 5 )  

Among the solutions corresponding to a given K we are interested in solitary waves, 
i.e. localized patterns. Such solutions tend to a constant far from the perturbed region : 
when z tends to & co h tends to h( k co) and h', h", h"' tend to zero. We shall consider 
mostly the case h( + a) = h( - 00) = h,( = 1) for which K = 1 -#v, but a situation with 
h( + m )  + h( - GO) can also be described by (6). It occurs if the flow rate is suddenly 
increased or decreased (h( - GO) > h( + 0 0 )  and h( + GO) > h( - 00)  respectively, since 
the flow rate is an increasing function of height) ; in this case the equation K = h3-&h 
must have two real positive roots h, and h,, as i t  fixes the values of the first integral 
when h' = h" = 0 far away from the perturbed region. Without loss of generality, one 
can set h, = 1 ,  h, being larger than 1 if v > 2 and smaller in the opposite case. 

Since h is the thickness of the fluid film, we are interested in solutions where h is 
strictly positive everywhere. If h reaches zero somewhere this means that the film 
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FIGURE 2. An homoclinic trajectory in a 2-dimensional phase space ( E a plane). In this case 
the homoclinic curve is also called a separatrix. 

is interrupted on contact lines, and (3) loses its meaning. For h > 0, (6) can be written 
in the form of a first-order differential system : 

where U, = h,U, = h’,U3 = h” using K = 1 -if.. Formally we shall write (7)  as 

a form which is more appropriate to discuss solutions within the framework of 
dynamical-system theory. System ( 7 )  defines a ‘flow’ in the ‘phase space’ spanned 
by U and solutions of the differential equation are trajectories in this phase space. 
The first step consists in a study of the properties of the flow in the vicinity of its 
critical points iJ, defined by F( U , )  = 0. These properties derive from the nature of 
the eigenvalues and eigenspaces of the tangent flow d F  at  U,. The set of eigenvectors 
corresponding to eigenvalues with positive real part generates the subspace tangent 
to the so-called ‘unstable manifold’ denoted W,. On the other hand, those 
corresponding to eigenvalues with strictly negative real part determine locally the 
‘stable manifold ’ denoted W,. The critical point U ,  attracts trajectories starting on 
its stable manifold for t + 00 and on the unstable manifold for t + - 00. It can happen 
that stable and unstable manifolds of U* interesect somewhere else than at  U,,  A 
case of special interest to us is when they intersect along a curve. Such a curve is 
called a ‘homoclinic trajectory’. This situation is presented in figure 2 for a 
2-dimensional vector field. Let A,  and A- be the two real eigenvalues (respectively 
positive and negative) of d F  at  U,, which is here a ‘hyperbolic point’. Along the 
homoclinic trajectory when z+_+ 00, U+ U,, and behaves as C, exp A,  z ,  where c7, 
are the eigenvectors associated with A,. This special kind of trajectory is precisely 
what we are looking for to represent mathematically the physical ‘solitary waves’, 
since far from the region of strong deformation one recovers the unperturbed state. 
Similarly the solitary wave corresponding to a jump h,+h, or h,+h, should be 
described by ‘ heteroclinic trajectories ’ joining two different critical points. We now 
apply these general considerations to the flow defined by (7).  
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FIQURE 3. Local picture of phase space for the flow defined by (15) around the critical point 
(1,0,0) for v > 2 and R > R,. W, and W, are respectively the unstable and stable manifolds. 

Critical points of (7) are given by U, = U, = 0 and the real roots of 
(1 - U,) (U; + U, + 1 - $) = 0, that  is to say h, = 1 and eventually h,, the positive root 
of Ul+  U,+ 1-#u = 0 (the second, always negative, root of this equation is 
unphysical). At the critical point U g )  = h, = (1, 0, 0), the eigenvalues of the linearized 
flow are solutions of the equation 

W A ~ + ~ ( R - R , ) A - ~ ~ - ~ )  = 0. (9) 

From this expression the sum of the 3 roots hi is zero. One is real, sag A,, and has 
the sign of the product, i.e. of v-2. The other roots may be real or complex- 
conjugate according to whether 

is negative or positive. When Az,  , are real (respectively complex-conjugate) they 
(respectively their real part) have (has) the sign opposite to that of v- 2. When R > R, 
the roots are always complex. When v > 2, A, is positive and defines a l-dimensional 
unstable manifold, the real part of A2,3  is negative and the stable manifold is 
2-dimensional. The situation is depicted in figure 3. The physical consequence is that  
the front and the rear of a solitary wave are not symmetrical. At the front which 
corresponds to the limit z --f + 03 the thickness of the film presents damped oscillations 
( A z , ,  complex with negative real part), while at the rear the height relaxes to 1 without 
oscillations (z+- 00, A, real and positive). This situation was observed by Kapitza 
& Kapitza (1949; see their plates (42) and (43)). When v < 2, we expect opposite 
results, i.e. a 1 -dimensional stable manifold, a %dimensional unstable manifold, all 
arrows reversed in figure 3 and oscillations of the height at the rear and not a t  the 
front, Qualitatively we can understand this behaviour in noticing first that  v = 2 is 
the velocity of infinitesimal perturbations a t  all wavevectors q ;  the velocity of any 
other perturbation has to be compared with this value, which presents itself as natural 
scale. Everything occurs as if a wave propagating quicker (v > 2) was pushing the 
surface ahead, inducing a buckling phenomenon (the oscillation of the thickness) 
analogous to the buckling of a plate under compression. The similarity also appears 
in the equations since the term (R-R,)/W in ( 1 1 )  is analogous to the load in the 
Foppl-von Karman equations (see e.g. Landau & Lifshitz 1959b), both being 
proportional to a second-order derivative of the deviation while stabilizing effects are 
accounted for by fourth-order derivatives. Since on the rear the surface seems to be 
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dragged along by the wave i t  has no tendency to buckle and the thickness does not 
present oscillations. The case u < 2 is a mirror image of u > 2 since the wave moves 
more slowly than infinitesimal modes. 

Stability properties of the other relevant critical point U p )  = (h,, 0 , O )  when i t  exists 
are also of interest. Eigenvalues of the tangent flow are the roots of 

(10) 
3 

2h; 
WA3+Q(Rq;-Rc)A- -(U-2h3 = 0. 

The analysis goes along parallel lines except that  u - 2 is replaced by u - 2 4 .  Using 
the equation which relates u to h, = 1 and h, : hi + h, + 1 -9 = 0, we write 

(2h;-u)+2h2-u+2-u = 0, 

and, assuming u > 2 ,  we get h, > 1,  and have 

2hi-u > 2 h , - ~  > 2 - U .  

The last term being negative, the first term needs to be positive in order for the sum 
of the three terms to  be equal to  zero. Thus when u > 2 ,  the critical point U p )  has a 
2-dimensional unstable manifold and a 1 -dimensional stable manifold which is the 
situation of U$) when u < 2 and conversely. 

Local analysis, even if i t  has already given a qualitative idea of the aspect of the 
solution corresponding to  a homoclinic trajectory, is not enough to ascertain the 
existence of such solutions and their quantitative properties. To do this we must get 
a more global image of the flow dU/dz = F ( U )  in phase space far from the critical 
points. This can be obtained by integrating the equations numerically, as shown in 
$3.2. 

3.2. Numerical search for solitary waves 
We can settle the problem of finding homoclinic trajectories as follows: a set of 
parameters R, B (or Re),  W being given, consider a sphere in phase space centred 
at the critical point U$) = ( 1 ,  0, 0). If it is sufficiently small, for u > 2 the intersection 
of the l-dimensional unstable manifold with this sphere will be a point P while the 
intersection of the 2-dimensional stable manifold will be a line L. A trajectory starting 
along the unstable manifold most often never comes back in the neighbourhood of 
U$). However, for certain values of u i t  may approach i t  again. The corresponding 
trajectory will touch the sphere a t  a point Q. If i t  was an exact homoclinic trajectory, 
the trajectory would intersect the sphere at a point on L. Thus the rule of the game 
is to put Q on line L,  which can be done by adjusting v. This will lead to a condition 
relating v to  R,  B and W .  If Q does not belong t o  L the trajectory is only 
approximately homoclinic and the point in phase space is repelled from the vicinity 
of U$) in the direction of the unstable manifold. The ideal homoclinic trajectory can 
only be approximated numerically. From a practical point of view we fix R and we 
look for u as follows: we define a function d(v )  which represents the minimum of the 
distance of ‘first comeback’ for a trajectory starting close to U$) in the direction of 
the unstable manifold computed from (9). Integration of system (7) for trajectories 
far from being homoclinic diverges rapidly. For better chosen u, d(v)  can be defined 
unambiguously. The numerical value of u is further refined by dichotomy in order 
to make d as small as possible. This minimization process is slightly different from 
the one used to show that a relation should exist between v and the other parameter. 
In particular, it  does not make reference to  the stable manifold but a trajectory can 
come closer and closer to U$) only if i t  comes closer and closer to the stable manifold, 
since otherwise it would be pushed away in the unstable direction. Anyhow, we never 
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FIGURE 4. Example of determination of homoclinic trajectories of (15). We have plotted the height 
of the film as a function of r. The Reynolds number is R = 10. The distance between the critical 
point ( 1 ,  0 , O )  and the initial conditions is and 
v = 2.4814328125, while the other corresponds to d(v) 5 3 x 

The shortest solution corresponds to d(v) 5 
and w = 2.4814337890625. 

obtain an exact homoclinic trajectory but only approximate ones ; however, our 
numerical results strongly suggest their existence : ultimately all numerical trajectories 
diverge, but, making more stringent the condition on the minimum of the distance 
d ( v )  and choosing initial conditions as close as possible to  U$),  we obtain trajectories 
which diverge a t  larger and larger values of z upon refinement of v (see figure 4 for 
an example). 

In  the ( R , v )  Cartesian plane, a t  B and W fixed (here B = 5 and W = 3000), the 
condition for homoclinic trajectories is split into several branches, each corresponding 
to one kind of solitary wave (figure 5). The different solitary waves are characterized 
by the number n of the principal humps (see figure 6 for n = 2 ) .  All these waves have 
a velocity larger than 2 ,  and the different branches v = v,(R) corresponding to  n-hump 
solutions all meet a t  v = 2 and R = R, = qB. I n  the limit R+R,+ and v+2+ the 
solutions become infinitely extended and their amplitude vanishingly small. For 
v < 2 ,  in order to keep a 1-dimensional unstable manifold we have integrated 
dU/dz = - F( U ) ,  which amounts to  a change z+- z ,  but we have found no homoclinic 
trajectories; we shall discuss this in more detail later. The last point worth noticing 
about figure 5 is the existence of a value R: above which homoclinic trajectories with 
n humps no longer exist. R,* is an increasing function of n, and, on each upper branch 
when R decreases, the amplitude and velocity of every solution increase rapidly while 
the width of the perturbed region remains roughly constant. 

3.3. Analytical approach to some limiting cases 

I n  this section we analyse the behaviour of the solution a t  the two ends of the curves 
v = v,(R), that  is to say in the limits (R+R,; v + 2 )  and (R+O; V + O O ) .  

Our numerical results show that for R close to R, and small w-2 the amplitude 
modulations in the solitary waves are small. In  order to study this domain we assume 
v = 2(  1 + e )  and h = 1 + eq5, q5 = O( 1). That E also scales h-variations is suggested by 
the fact that the distance between the two relevant critical points U$’ and Ug’ along 
the ( U ,  = h)-direction is precisely E a t  lowest order. When retaining the dominant 
terms, (6) reads, near e = 0, 

W$’” + #( R - R,) q5’ + 3eq5( q5 - 1 ) = 0. (11) 
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FIGURE 5.  The values of the parameters (R,  2') for which there exist homoclinic curves, W and R 
being fixed. The hatched branch contains the points which were actually observed in time-dependent 
simulations (cf. $4).  

I I 1 I 

50 100 150 
FIQURE 6. A homoclinic trajectory with two humps. This solution corresponds to the values of 

the parameter R = 10 and ZI = 3.64. 

Solitary waves exist when a certain relation between R and 21, here R-R, and e ,  is 
fulfilled. I n  order to  make this relation apparent we perform the variable change 
z = z ( ~ E /  W)+, obtaining 

#"'+p#'+#(#- l )  = 0, (12) 

= ~ ( ~ w ) - + c ~ ( R - R , ) .  (13) 

where the prime now denotes the derivative with respect to Z, and 



36 A .  Pumir, P. Manneville and Y .  Pomeau 

0 

0 

0 -2 

0.06 

0 

b 

FIQURE 7. Behaviour of ti-2 as a function of (R- R,)t for small values of R -  R, and W = 3000. 
The curve reaches the point (u-2,  (I?-&)$) = ( 0 , O )  with a finite slope, confirming the prediction 
of 53.3. 

Since (12) depends only on the parameter p, the existence of solitary waves is linked 
to special values of this parameter, say pa. Thus there exist families of homoclinic 
trajectories for (6) such that 

d ( R - R , )  - const or (v-2) - (R-R,)$. (14) 

Although the numerical study becomes more and more difficult when R- R, tends 
to zero, it is in good agreement with the asymptotic behaviour predicted above (figure 
7) .  A posteriori, this can be taken as a proof of the fact that  e also scales amplitude 
variations. At a local scale U$) and “2) have symmetrical properties, and this 
symmetry is present in ( l l ) ,  which does not enable us to understand why we have 
found homoclinic trajectories for v > 2 and not for v < 2. This shows quite clearly 
that the existence of homoclinic trajectories does not depend only on local properties 
but also on the global structure of the phase space. 

This result can be compared with the other weakly nonlinear analyses. Since the 
correct scaling of z is z oc Z E ~ ,  the typical wavenumber of a solution is ct - €4. Since 
R-R, - ez, we simply deduce that R- R, N a2 on the branc,h of solitary waves. 

If we relax the condition v - 2 and small amplitude there is no reason to forbid 
solutions for R < R,, and from figure 5 we see that such solutions exist with 2) % 2, 
even for R --f O+ and a large amplitude. In  order to obtain their asymptotic behaviour 
in the limit R+O, we have to return to (6). After division by h3 i t  reads 

(15) 
h-1 - (h2+ h + 1 -&I) + (4Rh3 -23) h’ + Wh”’ = 0. 

h3 
Integration of (15) over ( -  co, + C O )  gives 

and integration after multiplication by h’ leads to 

W dz h”’ = dz (+Rh3 - B )  h”. ( 1 6 b )  s s  
For the maximum h,,, of the amplitude, we deduce from (16a,  b )  that, as orders of 
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FIGURE 8 FIGURE 9 

0.5 1 .o R -1 0.5 1 .o R -* 
FIGURE 8. Rehaviour of the amplitude of the localized one-hump solution as a function of R-i, for 
W = 3000, B = 5. 

FIGURE 8. The velocity of the localized solution as a function of R d ,  for W = 3000, B = 5. 

magnitude: RhhaX ’- const and v - hkax - R-3. These asymptotic behaviours are in 
good agreement, with our numerical results, as can be seen on figures 8 and 9, which 
display h,,, and v as functions of R3 and R-f respectively. 

3.4. Additional remarks 

3.4.1. On the existence of periodic or random wavetrains 
Solitary waves considered here are represented in a 3-dimensional phase space 

as homoclinic trajectories joining for z+ co a critical point with a I-dimensional 
unstable manifold (A, > 0) and a 2-dimensional stable manifold (A2, = p +_ iw, p < 0) 
with A ,  + p  > 0. This situation has been considered from a mathematical point ofview 
by Shil’nikov (1965, 1970), who showed that in the neighbourhood of the homoclinic 
trajectory there exists an  infinity of periodic solutions (some results of Shil’nikov have 
been improved recently by Tresser 1981). The existence of these periodic solutions 
is crucial in understanding certain of our numerical results and also probably the large 
variety of solutions observed by Kapitza & Kapitza (1949). Qualitatively one can 
saey that near the exact homoclinic trajectory there exist trajectories which closely 
resemble it for large portions but miss the critical point at the last moment, which 
gives birth to  another almost homoclinic trajectory etc. An example of this ease is 
given in figure 10,  which displays a solution with two consecutive solitary waves - a 
solution which should not be confused with the 2-hump homoclinic curve given in 
figure 6. Periodically or randomly disposed almost-homoclinic curves can be obtained 
at will, which seem to correspond to  certain regimes observed experimentally by 
Kapitza. 
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X 

FIGURE 10. An example of an almost-homoclinic curve. These solutions give birth to  wavetrains 
composed of solitary waves. The values of the parameters are R = 11.26 and w = 2.481 45 ( W = 3000 
and B = 5). 

FIGURE 1 1 .  Comparison between weakly nonlinear analysis and our results: -, neutral curve 
for linear analysis; ----; curve of solutions for which v = 2;  below this curve the velocities of 
the solution are greater than 2 ; - - - - -, curve of marginal stability for sideband mechanism ; --, 
branches of solitary waves. 

As there exists a close connection between our solitary waves and periodic solutions 
i t  is possible to compare our weakly nonlinear results with the conclusions of Lin 
(1974) and Nakaya (1975) concerning the periodic waves. In  the (R,u)-plane the 
curves of existence of solitary waves would correspond to R- R, - u2. A possible 
situation is presented in figure 11. 

Around these curves would exist a lot of periodic or almost-periodic waves. From 
our analytical approach we predict that their amplitude e K u3, which is in agreement 
with Nakaya’s results, a t  least in the weakly nonlinear regime. 

The absence of homoclinic trajectories for v < 2 can also be related to the weakly 
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nonlinear analysis. Tho existence of a whole domain around (Rc,  q = 0) in which the 
velocity of solutions, determined in a perturbative expansion, is greater than 2 is in 
agreement with our findings (see figure 11). 

3.4.2 Heteroclinic trajectories and hydraulic jumps 

Besides homoclinic trajectories we can also find heteroclinic trajectories, that is to 
say trajectories joining two different critical points. As already shown for v > 2, in 
addition to U$) = (1, 0 , O )  we have to consider U$) = (h,, 0, 0 ) ,  where h, is the positive 
root of h2+h+ 1 -& = 0 (h,  > 1). The stable manifold of this critical point is 
1-dimensional (it is a curve in the ordinary sense) while its unstable manifold is 
2-dimensional (a surface). Since two surfaces intersect along a line in 3-dimensional 
space, in general this unstable manifold will intersect the 2-dimensional stable 
manifold of the other critical point U$). The heteroclinic trajectory is a solution 
leaving U p )  along its unstable manifold and reaching U$) along its stable manifold. 
Such solutions correspond to a jump with a height h, upstream and 1 downstream. 
Owing to the imaginary parts of the eigenvalues the height h oscillates both a t  the 
head and the rear of the jump. Such solutions can be obtained numerically either 
directly as before or by using the methods developed in 54 (see especially 54.1.1). 
The reverse case of a heteroclinic trajectory going from U$) to Ug") should be quite 
exceptional, since i t  corresponds to a reconnection of two 1 -dimensional manifolds 
in 3-dimensional space. This remark allows us to understand the global lack of 
symmetry between Ug" and U(,z) in phase space and gives a clue to the reason why 
which we have not found homoclinic trajectories for v < 2. Indeed what seems 
important to the structure of phase space is the existence and relative positions of 
points Ug)  and U g ) .  We have seen that, when v > 2 ,  then h, > h, = 1, and one could 
find either homoclinic trajectories starting from U$) and coming back to UV) or 
heteroclinic trajectories starting from U p )  and going to U$) while no U(,z) + U$) or 
U$)+ Up)  trajectories could be found. When v < 2 the roles of Ug" and U p )  are 
inverted and we expect opposite results, i.e. the possibility of homoclinic trajectories 
U$)+ Up)  and heteroclinic ones U'," + U(,z) but not the reverse. This is a global 
property of phase space not accessible to local analysis. Note that the convention 
plays a part in labelling the critical point. An integration constant K being given, 
the structure of the phase space is fixed by v and K.  And we may define h, and h, 
as the two real positive roots of h3-&h = K with the supplementary convention 
h, < h,. Then we can draw a definite global picture of phase space. The identification 
of one of the values h, or h, as the physical unperturbed height is not mathematically 
relevant even if it  controls the nature of possible trajectories. 

3.4.3 On the role of the order of the gradient expansion 
This discussion seems to invoke the dimension of phase space in a crucial way. 

However, the existence of a relation between the parameters R, B ,  Wand v is related 
to the very nature of the problem. Let us suppose that in our gradient expansion we 
had considered terms up to the nth order. The phase space for the flow dU/dz = f( U )  
would be n-dimensional. To determine homoclinic trajectories we demand that an 
m-dimensional manifold (the stable manifold of the critical point U*) intersects an 
(n--m)-dimensional manifold (the unstable manifold of U*) along a curve. This leads 
precisely to a relation between R, W, v and B.  It is more difficult to see, from a general 
point of view, that the shape of the surface, up- and downstream from the perturbed 
region, would be unchanged by such a modification of the equations, since the critical 
elements of U* are changed. 
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3.4.4. Choice of numerical values 

To fulfil the conditions of validity of the long-wavelength expansion leading to 
(3), we chose large values of W ( W = 1000 and 3000) and a finite value of B (B  = 5). 
With these choices we sought a condition between R and v for the existence of 
homoclinic trajectories for (8). We have actually performed numerical calculations 
with other values of W and B, nominally of order unity. This avoided the formal 
manipulation of large numbers by the computer. This was compatible with the basic 
assumption of our model, owing to the following remark. Let us  make the (formal) 
change of length- and timescales 3 = kx, t =  kt in (3). It becomes 

hi+ (Qh3+ (A kRh6-QkBh3) h,+#Wk3h3h,), = 0. (3') 
The problem with W = 1000 (or 3000) and b = 5 is thus equivalent to  a new 

problem with w = k3 W ,  B = kB, R = kR, up to this change of length and time limit. 
Let 1 (respectively Z) be the typical size of the solution of (3) (respectively (3')) 
extrapolated from the numerical results with W = 1000 (respectively w =  1000k3), 
B = 5 (respectively B = 5k) and R (respectively R = kR). Consistency with the initial 
assumption demands WlP2 - 1 and 1-' < 1 .  In  terms of Wand Z, these conditions read - k and 1 %  k. For a matter of convenience, we have chosen k = 0.1. All our 
numerical results satisfy the previous conditions, showing that they are indeed 
consistent with the formal expansion sketched in $ 1 .  

4. Numerical study of the initial-value problem 
The existence of a special class of solutions which are stationary in a moving 

reference frame is not the only point to  consider. We have also tried to investigate 
their relevance. This is a difficult question which relates first to the stability of these 
solutions and second to the way in which they attract initial conditions taken in the 
complete (x,t)-domain. A theoretical approach to this problem is difficult. I n  this 
section we present a partial answer (of experimental nature) given by the numerical 
simulation of the initial-value problem for the complete equation (3). The simulation 
takes place on a finite domain 0 < x < L with various boundary conditions a t  x = 0 
and L. At time t = 0 we choose an initial condition localized in space ; that  is to say 
one that differs from a constant only on a small interval (xl, x,), the perturbation being 
smooth and sufficiently small. To generate the time evolution, we used a 
finite-difference scheme which is quasilinearized and implicit of the Crank-Nicholson 
type (see e.g. Richtmyer & Morton 1967); the lattice spacing Ax = 0.125 and time 
step At = 0.125 are small enough to give sufficient, accuracy. This can be controlled 

by checking that h(x, t) dx is constant in time - a property which derives directly 

from (3) for periodic boundary conditions and which also holds as long as the localized 
solutuion does not interact with boundaries in the other cases. If Ax and At are too 

loL 
large, the discrete analogue of h(x, t)  dx drifts slowly. 

4.1. Numerical results with non-periodic boundary conditions 

4.1.1. Heteroclinic trajectories 

Let us begin with results obtained on the jump corresponding to  the heteroclinic 
trajectory U(,z)+ U$).  For this simulation we assumed h, = h,, = 0 a t  x = 0 and 
x = L. The initial condition was a step from h, a t  x = 0 to  h, a t  x = L,  h, > h, (=  1 
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FIGURE 12. A steady hydraulic-jump solution of (10). One observes a buckling phenomenon both 

up- and downstream of the perturbed region. 

eventually) localized a t  x = BL and smoothed by a cosine arc. The simulation was 
performed in a frame moving at the velocity v = $(h; + h, h, + hi )  deduced from the 
previous analysis. For R small enough the wave is steady in that frame and has the 
expected profile (see figure 12). However, when R increases we observed a time- 
dependent buckling (see figure 13), and, for even larger R, h can become negative after 
some time so that the solution loses its physical meaning. 

4. 1 .2. Homoclinic trajectories 

We now turn to  the homoclinic trajectories. Using the same boundary conditions 
and initial conditions with h, = h, = 1 and a small ‘cosine-bell’ bump a t  x = SL, we 
observe the formation of a solitary wave very similar to  those obtained in $3.  Figure 
14 displays such a solution. However, i t  is very difficult to choose the velocity v of 
the reference frame in order to  observe a steady solution. If v is not properly chosen 
the solution slowly moves in one or the other direction, and interactions with one 
of the boundaries cannot be neglected after a while. In  order to avoid this difficulty 
and to follow a solution over arbitrarily long times, we have performed simulations 
with periodic boundary conditions. The main conclusion of this subsection is that 
solitary waves as studied in $3  exist effectively in the sense that they attract a non-void 
set of initial conditions in the (2, t)-domain. The question of their long-term stability 
is the subject of $4.2. 

4.2. Long-term evolution of waves 

4.2.1. Numerical results with periodic boundary conditions 
Here we present the numerical solutions obtained for L = 125, W = 1000 and 

B = 5, the maximum of the amplitude of the initial perturbation being 0.005. 
(i) For R < R, the initial perturbation is damped more and more slowly as R-t R,. 

A t  large times the solution tends to the basic one h = 1. 
(ii) For R > R, the initial perturbation grows and changes its shape to  resemble 

homoclinic solutions with 1 hump calculated in $3 .  This first evolution is the same 
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FIGURE 13. Evolution of an hydraulic jump as a function of time. The time-dependent buckling 
of the free surface only appears beyond a given value of the Reynolds number. Two successive curves 
are separated by a time interval At = 20. 

! 

FIGURE 14. A solitary wave stationary in a reference frame. This solution was observed 
imposing h, = h,, = 0 at the boundaries. 

as what was seen with boundary conditions h, = h,, = 0 ($4.1.2); however, we are 
now able to follow the solution over longer periods of time and to observe new 
features. The first point to mention is the growth of a wavetrain at the tail of the 
main perturbation which keeps advancing with an almost constant shape. This 
wavetrain is made of a small number of oscillations with a small amplitude. It remains 
localized in space while advancing a t  a lower speed (it seems to move back with 
respect to the reference frame moving a t  v = 2). When this train is sufficiently far 
from the main solitary wave, the process repeats itself. Since we are dealing with 
periodic boundary conditions, the perturbation collides with t>he slowest ones. This 
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FIQURE 15. Evolution of the solution in a large box ( L  = 125), with periodic boundary conditions. 
(a)  The growth of the initial localized perturbation and the appearance of a complicated shape of 
the surface. (b )  The find stage of an  interaction between two localized perturbations. ( e )  A collision 
between two solitary waves. These figures were obtained for the values R = 9, W = 1000, B = 5. 
The frame in which the equations were studied is moving at velocity = 2 ,  and the time interval 
between two curves is At = 250. 
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collision changes drastically the shape of the surface for a while, but the solution 
recovers a remarkably localized aspect a short time after the collision. I n  fact we 
observe a rather disordered regime during a very long time, the solution being 
composed of several solitary waves in interaction (see figure 14). The nature of this 
disorder - turbulent or not - will be discussed in $4.2.2. It seems that the solution 
tends towards a regular arrangement of solitary waves. This is suggested by the result 
of the simulation over a much smaller length presented in figure 16 ( L  = 25). 

(iii) The situation depicted above holds as long as R is smaller than a certain value 
R* above which catastrophic events occur. R* is obviously related to the critical value 
Rr above which no 1-hump solitary wave exists; however, we have not tried to check 
this numerically. When R > R* the beginning of the evolution is the same as before, 
but after a finite time lapse the main perturbation gains a large amplitude and starts 
to evolve quickly, all derivatives becoming large. The numerical solution remains 
finite, however, owing to the strong stability of the implicit numerical scheme, but 
from one space step to the next variations are very large, and the numerical results 
lose any connection with the partial differential equation. This phenomenon remains 
unchanged when the resolution is increased by a factor of two; moreover i t  happens 
nearly a t  the same instant with the same initial condition. This is an indication that 
this catastrophic evolution is a property of the equation for R > R* independently 
of the numerical integration scheme. 

(iv) We make the following remarks. ( a )  This ' catastrophic ' behaviour occurs for 
all R if the amplitude of the initial perturbation is too large. ( b )  We have not succeeded 
in growing waves with more than 1 principal hump like that of figure 6. Whenever 
1-hump solutions are possible, they seem to mask the other kinds of wave which have 
a much smaller amplitude, and, when 1-hump solutions are no longer possible, it  is 
likely that solutions with several humps do not attract a large set of initial conditions. 
( c )  Solitary waves with large amplitude and large velocity corresponding to  the upper 
parts of the branches in figure 5 have never appeared. The reason is either the 
preceding one or more probably that they are intrinsically unstable. 

4.2.2. Existence and stability of waves 
The simulations presented above undoubtedly confirm that there exist solitary 

waves of the kind derived using the dynamical-systems approach. But only the 
simplest kind seems easily producible, and even in that case we observe unexpected 
features: wavetrains a t  the rear of a solitary wave, and an apparently disordered 
regime when several solitary waves interact. The first problem mentioned can find 
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an explanation from the instability of the basic flow for R > R, against fluctuations 
with wavevector around qmax = [$(R- Re)/ w]i which corresponds to the most 
unstable mode. A similar phenomenon has already been invoked for localized 
solutions of (17) below (Kuramoto & Tsuzuki 1976). 

We consider the second problem in two steps. First we examine whether the 
evolution is turbulent or not, concluding that i t  is not and next we interpret this 
evolution as a diffusive relaxation towards some final state. 

From figure 15 one can think that the motion has become random due to the chaotic 
interaction of waves. There is also a second reason to  suspect weak turbulence: using 
a limit different from ours, Sivashinsky & Michelson (1980) and later Sivashinsky & 
Shlang (1982) have shown that the evolution of the fluid film could be reduced to 
that of a variable 4 governed by the equation 

This equation appears in several contexts (chemical oscillations, chemically reacting 
fronts and flames. . . ) and i t  is known to have spontaneously turbulent solutions for 
L sufficiently large. However, in accordance with a referee’s suggestion, this does not 
imply that a turbulent film is the only consequence. It may imply that the three- 
dimensional character of waves becomes important in some parameter range. The 
stabilizing effect of the additional dimension was discussed by Krishna & Lin (1977). 

In  nrder to characterize numerically the character - turbulent or not - of a solution 
of a dynamical system, one determines its Lyapunov numbers (see e.g. Henettin, 
Galgani & Strelcyn 1976). These numbers relate to  the stability of the given trajectory 
in phase space. When they are all non-positive, errors do not grow exponentially, and 
the trajectory is stable. When some Lyapunov numbers are positive errors are 
exponentially amplified and the trajectory is unstable. The system is sensitive to 
initial conditions and becomes unpredictable in the long term: i.e. i t  is turbulent 
(Ruelle 1973). Once discretized in space, partial differential equations such as (3) or 
(17) can be considered a a system of N coupled ordinary differential equations - the 
degrees of freedom being the values of h a t  the N points of the lattice - and Lyapunov 
numbers can be computed - Ruelle (1980) proved in some cases the existence of a 
discrete spectrum of Lyapunov numbers for infinite-dimensional dynamical systems, 
which may be considered as an extension of partial differential equations. 

Irregular solutions of (17) for large enough L do have positive Lyapunov numbers, 
the number of which increases linearly with L (Pumir 1982), but in the present 
problem the largest Lyapunov number actually tends to  zero as time goes on; the 
irregular evolution of waves cannot be considered as turbulent but seems to 
correspond to slow relaxation towards a steady regime. The latest state of this 
relaxation can be understood as diffusive process. I n  order to show this, we first 
remark that ( 3 )  is autonomous so that its solutions are invariant under time-space 
translations and infinitesimal perturbations corresponding to this invariance property 
are neutral. Consequently we expect that the latest perturbations t o  relax will be close 
to these neutral modes. I n  order to  study this final evolution we adapt to the present 
problem the formalism devised to deal with perturbations linked to  the position or 
‘phase’ of the cell pattern in convection (see e.g. Eckhaus 1965; Benjamin 1967; 
Benjamin & Feir 1967). Assume that h, is the final solution travelling a t  speed v :  
h , ( x , t )  = hf(z = z-vt) .  Owing to  translational invariance, h,(z++)  is also a solution 
as long as 4 is a constant ‘phase’. If we allow for slow variations of 4, i.e. 4 slowly 
varying with z and t ,  then h,(z+$)  is no longer a solution, and corrections to i t  have 
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to be calculated. We look for h in the form. h(z ,  t )  = h,(z + $(z ,  t ) )  + 6h and replace 
h f ( z + $ )  by its Taylor series: 

(18) h(z,  1)  = h p ( z ) + ~ ( z , l ) h ; ( z ) + ~ ~ ~ h ; ( Z ) f  ... +6h(’)+6h(Z)+ ..., 

where we assume that 6h@) is of the order of the i th derivative of $ with respect to 
z or t (z-derivative on h, are denoted by primes). In  the moving frame, (3) reads 

(19) 

and inserting h in this equation one gets a hierarchy of linear problems of the form 

= M(’) ( i  = 1,2,  ...), (20) 

L ~ I  = (a, - 2, a,) h + az(3h3+ & ( m e -  E, h3) a, h + fwh3a23 h) = o 

where A is obtained from L by linearization around h,. The linear operator A has 
a non-trivial kernel hf, since, for qb = const and small, 

L[h,(z + $)] = L[h,(z) + $h;(z)] = L[h,(z)] + $Ah; 0. (21) 

Thus equations of the form (20) will have a solution only if they satisfy a solvability 
condition of the form 

where 6 belongs to the (non-void) adjoint kernel of A (it satisfies A+A = 0) A being 
the adjoint of A+ in the sense of some inner product defined on the same interval 
as h ( z ) .  The dynamics of $ will be defined order after order through these solvability 
conditions. At first order we get 

(22) 

( A ,  M(i) )  = 0, 

AFW = - A ( ~ )  a, $ - ~ ( 2 )  a, $, 

whcre A ( z )  and H ( z )  are easily obtained upon substitution. This existence condition 
reads Aa, $ +Bat 4 = 0, where A = (6, A ( z ) )  and B = ( A ,  B ( z ) )  are some constants a 
priori different from zero, but which we shall not attempt to calculate. The qualitative 
content of this order is that  an infinitesimal phase perturbation propagates at a 
well-defined velocity v’ = --A/B. Equation (30) can be solved assuming 6h(l) = a, $u1, 
which gives Aul = (AB(z)-BA(z)) /B.  To go to next order it is convenient to change 
from the (2, t )  reference frame to  the (z’ = z-v’t, t’ = t )  reference frame in which the 
perturbation is steady at this order. Going t o  next order (3; or 8%) this perturbation 
is no longer steady, but just relaxes according to a diffusion law at,$ = Da:,$, where 
the diffusion coefficient D expresses itself as the ratio of two scalar products in the 
same way as 2)’ does. This ‘phase diffusion’ or sideband (in)stability is not limited 
to the domain of weak nonlinearities. As shown by Pomeau & Manneville (1979), this 
exists for periodic steady solutions of translationally invariant equations describing 
irreversible processes. Thus there is no immediate connection between our consider- 
ations, concerning the fully nonlinear domain, and the properties related to Eckhaus- 
like instabilities, which refer usually to the weakly nonlinear domain, where analytic 
results can be more easily obtained. 

I n  the weakly nonlinear domain we can compare our results with Lin’s (1974) 
predictions. Both approaches are compatible if one of the curves of figure 1 1  is above 
the line of neutral stability with respect to the sideband mechanism while the other 
curves (corresponding to  more than one hump) are below. It would be very difficult 
to go beyond this formal approach in order to obtain the explicit values of d and 
D (this would require knowledge of the final solution and i t  would be necessary to 
determine the kernel of the adjoint to A before calculating the scalar products). 
However, even at this level one is able to understand the final evolution of the 
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FIGURE 17. Final stage of catastrophic evolution. The shapes of the surface a t  three different times 
separated kiy At = 0.4 are superposed. The maximum of the solution grows very quickly and the 
perturbed region becomes narronw and narrowcxr. Sumerical values of the parameters arc’ R = 13, 
u’ = 1000 and R = 5. 

solution. The sign of D determintxs the stability of the solution against compression- 
/dilatation modes. If D were negative the solution would be unstable - in cellular 
convection this would be the Eckhaus instability (Eckhaus 1965). Here ‘expwimen- 
tally’ for R < R, one has a true relaxation and U > 0. The fluctuations are tlaniycl 
in the moving frame (z’, t ’ ) .  In  a box of length L the slowest relaxing mode has the 
wavenumber q = 2n/L and the relaxation rate is 1 / ~  = D ( ~ Z / L ) ~ .  For L = 25 we have 
estimated 7 to  be of the order of 400, which is pretty long. For L = 125 the steady 
state will be much more tfifficault to reach (see figure 15), and tbr I, + CCI an algebraic 
relaxation - t-4 is expected as usual for tfiffusivt, processes. 

To end this section let us come back to  the catastrophic behaviour observed when 
the amplitude of the perturbation is too large (e.g. for R > R*). Figure 17 displays 
the superposition of 3 successive time steps immediately before the moment when 
the numerical solution loses its meaning as a solution of the partial diffvrential 
equation. We can observt. a narrowing of the perturbed region and a rapid increase 
of the amplitude. This leads to think that the solution has a singularity a t  some finite 
time to ( = 0 for convenience). Th i s  suggests that we look for this catastrophic solution 
under the form of a superposition h = hreg + hslng where thc. regular part remains finite 
and smooth. The singular part will be taken as 

hslng = It] H(zltl -q, (23) 

a = $ ,  p=’ 6 ,  and, with the change H-t( i j$W/K2) i  H ,  r + ( j W 2 / R ) i x ,  a universal 

where a and /3 should be positive in order to reproduce the numerical features. 
Replacing h in (3).  setting S = xi-8.  and keeping the most-divergent terms we get 

equation for H is obtained: 

(34) 

together with the boundary conditions H + O  when X + +_ a, since the singular part 
contributes only in the viiainity of the singularity. Wt. will not attempt to solve this 
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equation, but the fact that  one can find an equation for the scaling function H with 
positive a: and p corroborates well the numerical evidence. However, the initial 
conditions leading to  such an evolution remain unknown. The existence of this 
singularity can be interpreted physically as a breaking of the film, but notice that 
derivatives become large just before this breaking so that the weak gradient 
assumptions needed in the derivation of (3) are no longer fulfilled. Notice also that 
a breaking of the film with appearance of a contact line could happen if h = 0 
somewhere. Writing (3) in the form 

(where P is a polynomial) shows that h cannot reach zero as long as h, . . . , hxxxx are 
not singular. 

5. Summary and conclusion 
I n  this paper we have studied the nonlinear evolution of waves a t  the surface of 

a fluid film flowing down an inclined plane. The starting point is a nonlinear partial 
differential equation derived under the following assumptions : (i) the restriction to 
2-dimensional flow ; and (ii) slow variations in the direction of the flow when compared 
with variations through the thickness of the film. 

Above a certain critical Reynolds number R, the flat film is unstable against small 
waves running at twice the fluid velocity at the surface (v = 2). Weakly nonlinear 
analysis in terms of the amplitude equation shows that the bifurcation is supercritical : 
i.e. the bifurcated state is stable for R > R, and its amplitude goes to zero when 
R + R:. Here wc wanted to give up the reference to  delocalized periodic waves and 
to  tackle the full nonlinear problem for localized perturbations in order to  see whether 
such finite-amplitude perturbations could trigger a subcritical instability. We looked 
for localized waves in assuming the existence of solutions steady in a moving reference 
frame. This leads to a formulation in terms of ordinary differential equations and to  
the identification of these waves with ' homoclinic trajectories ' in phase space. The 
net result was a relation between the velocity v of the wave and the Reynolds number 
R. The most noticeable points were (i) the absence of localized waves with velocity 
v < 2;  (ii) the existence of different types of waves according to the number of 
principal humps; (iii) the existence of a maximum value R,* above which n-hump 
solutions disappear; and (iv) the existence of waves with R < R, and a large 
amplitude. This study was completed by numerical simulations of the initial-value 
problem intended to check the physical relevance of these results. It turned out that, 
during the evolution, the only kind &wave that could be recognized was related to 
the l-hump solution corresponding to the lower branch of the curve v(R).  Moreover, 
the initial-value problem has a solution for all times and sufficiently small perturbation 
only if R < R,, the catastrophic behaviour observed for R > R, probably being 
related to a singularity a t  a finite time for the solution of the partial differential 
equation. We observed neither solutions with more than one hump over long enough 
durations nor solutions corresponding to  the upper branches of v(R)  (large amplitude, 
large velocity). Finally all solutions observed corresponded to R > R,. The basic state 
h = const being unstable against infinitesimal periodic perturbations, this instability 
leads to the formation of growing wave-packets on the tail of a solitary wave, and 
at a later stage to  trains of solitary waves. The evolutipn was complicated but 
definitely not turbulent, with some evidence of a slow relaxgtion of diffusive type. 
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All the results summarized above may help to  understand qualitatively the great 
variety of flow regimes observed experimentally by Kapitza & Kapitza. I n  particular, 
the stability analysis of critical points of the associated dynamical system and the 
subsequent qualitative description of homoclinic trajectories suggest an  explanation 
for the profile of the waves, while the simulation reproduces the generation of 
wavetrains and their organization. An obvious limitation of our analysis is the 
assumption of a 2-dimensional flow. Indeed, if a wave appears one should test its 
stability against distortions in the plane of the flow but in the direction transverse 
to the motion; i.e. undulations of the wave front in amplitude or phase (position). 
Such distortions would be coupled with velocity changes so that a truly chaotic regime 
could emerge, as observed for example by Binnie (1957) or Tably & Portalsky (1962). 
There could also exist localized perturbations ( ie .  disturbances confined in a finite 
region of the inclined plane). The difficulty in introducing a third coordinate comes 
from the fact that  the finite-dimensional dynamical-system theory has to be 
abandoned, but an approximate theory keeping only few Galerkin modes could 
perhaps allow for an understanding of the basic couplings leading to  chaos. A similar 
remark should hold for the problem of birth and growth of localized structures in 
the process of intermittent transition to turbulence in pipes. 
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